The Pythagorean Theorem & Its Converse

The formula for the Pythagorean Theorem is $a^2 + b^2 = c^2$. This lesson will demonstrate the proof help students understand the theorem and its converse.

Grade Level:

7th Pre-Algebra 8th Algebra I/Geometry

Strategies:

Choral Response You Tries Active Participation Student Talk

Standards:

7NS2.4 - Use the inverse relationship between raising to a power and extracting the root of a perfect square integer.

7MG3.3 – Know and understand the Pythagorean Theorem and its converse and use it to find the length of the missing side of a right triangle and the lengths of other line segments and, in some situations, empirically verify the Pythagorean Theorem by direct measurement.

The Pythagorean Theorem:

The Pythagorean Theorem is a relation among the three sides of a *right triangle*. It states that in any right triangle, the sum of the squares of the lengths of the two legs is equal to the square of the length of the hypotenuse. In other words, $a^2 + b^2 = c^2$.

The Converse of the Pythagorean Theorem:

The **converse** of the theorem is also true. For any triangle with sides *a*, *b*, *c*, if $a^2 + b^2 = c^2$, then the triangle is a right angled triangle.

Proof of the Pythagorean Theorem:

Using Algebra, we can show that $a^2 + b^2 = c^2$;

$$(a+b)(a+b) = c2 + 2ab$$
$$a2 + 2ab + b2 = c2 + 2ab$$
$$a2 + 2ab - 2ab + b2 = c2 + 2ab + 2ab$$
$$a2 + b2 = c2$$

Warm-Up

Standards: 7NS2.4, 7MG3.3

answer.

NAME:

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

1	
2	
3	
4	
5	
6	
Z	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

1	
2	
3	
4	
5	
6	
Z	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

NAME: KEY

1	1
2	4
3	9
4	16
5	25
6	36
7	49
8	64
9	81
10	100
11	121
12	144
13	169
14	196
15	225
16	256
17	289
18	324
19	361
20	400
21	441
22	484
23	529
24	576
25	625

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

L

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

NAWLE:	
$\sqrt{1}$	
$\sqrt{64}$	
$\sqrt{225}$	
$\sqrt{484}$	
$\sqrt{25}$	
<u>√121</u>	
$\sqrt{576}$	
$\sqrt{256}$	
$\sqrt{625}$	
$\sqrt{36}$	
√ <u>196</u>	
$\sqrt{400}$	
$\sqrt{9}$	
$\sqrt{81}$	
$\sqrt{289}$	
$\sqrt{144}$	
$\sqrt{441}$	
$\sqrt{324}$	
$\sqrt{49}$	
$\sqrt{529}$	
$\sqrt{100}$	
$\sqrt{4}$	
$\sqrt{169}$	
$\sqrt{361}$	
$\sqrt{16}$	

B /

$\sqrt{256}$	
$\sqrt{576}$	
$\sqrt{625}$	
$\sqrt{484}$	
$\sqrt{25}$	
$\sqrt{121}$	
$\sqrt{36}$	
$\sqrt{1}$	
$\sqrt{400}$	
$\sqrt{144}$	
$\sqrt{441}$	
<u>√196</u>	
$\sqrt{9}$	
$\sqrt{64}$	
$\sqrt{4}$	
$\sqrt{324}$	
$\sqrt{529}$	
$\sqrt{100}$	
$\sqrt{49}$	
$\sqrt{361}$	
<u>√169</u>	
$\sqrt{289}$	
$\sqrt{16}$	
$\sqrt{81}$	
$\sqrt{225}$	

$\sqrt{9}$	
$\sqrt{144}$	
$\sqrt{36}$	
$\sqrt{225}$	
$\sqrt{324}$	
$\sqrt{64}$	
$\sqrt{484}$	
$\sqrt{100}$	
$\sqrt{1}$	
$\sqrt{576}$	
$\sqrt{169}$	
$\sqrt{25}$	
$\sqrt{625}$	
$\sqrt{256}$	
$\sqrt{81}$	
$\sqrt{529}$	
$\sqrt{400}$	
$\sqrt{4}$	
$\sqrt{289}$	
<u>√121</u>	
√ <u>361</u>	
$\sqrt{441}$	
$\sqrt{16}$	
<u>√196</u>	
$\sqrt{49}$	

$\sqrt{100}$	
$\sqrt{169}$	
$\sqrt{9}$	
$\sqrt{361}$	
$\sqrt{484}$	
$\sqrt{36}$	
$\sqrt{121}$	
$\sqrt{64}$	
$\sqrt{324}$	
$\sqrt{256}$	
√ <u>196</u>	
$\sqrt{4}$	
$\sqrt{225}$	
$\sqrt{576}$	
$\sqrt{49}$	
$\sqrt{529}$	
$\sqrt{81}$	
$\sqrt{625}$	
$\sqrt{25}$	
$\sqrt{441}$	
$\sqrt{1}$	
$\sqrt{400}$	
$\sqrt{144}$	
$\sqrt{289}$	
$\sqrt{16}$	

$\sqrt{25}$	
$\sqrt{225}$	
$\sqrt{576}$	
$\sqrt{64}$	
$\sqrt{625}$	
$\sqrt{4}$	
$\sqrt{256}$	
$\sqrt{144}$	
$\sqrt{81}$	
$\sqrt{9}$	
$\sqrt{400}$	
$\sqrt{100}$	
$\sqrt{484}$	
$\sqrt{121}$	
$\sqrt{16}$	
$\sqrt{441}$	
$\sqrt{324}$	
$\sqrt{289}$	
<u>√196</u>	
$\sqrt{49}$	
$\sqrt{529}$	
$\sqrt{361}$	
$\sqrt{36}$	
$\sqrt{1}$	
√169	

NAME:	KEY
$\sqrt{1}$	1
$\sqrt{64}$	8
$\sqrt{225}$	15
$\sqrt{484}$	22
$\sqrt{25}$	5
√ <u>121</u>	11
$\sqrt{576}$	24
$\sqrt{256}$	16
$\sqrt{625}$	25
$\sqrt{36}$	6
√ <u>196</u>	14
$\sqrt{400}$	20
$\sqrt{9}$	3
$\sqrt{81}$	9
$\sqrt{289}$	17
$\sqrt{144}$	12
$\sqrt{441}$	21
$\sqrt{324}$	18
$\sqrt{49}$	7
$\sqrt{529}$	23
$\sqrt{100}$	10
$\sqrt{4}$	2
$\sqrt{169}$	13
√361	19
$\sqrt{16}$	4

$\sqrt{256}$	16
$\sqrt{576}$	24
$\sqrt{625}$	25
$\sqrt{484}$	22
$\sqrt{25}$	5
<u>√121</u>	11
$\sqrt{36}$	6
$\sqrt{1}$	1
$\sqrt{400}$	20
$\sqrt{144}$	12
<u>√441</u>	21
<u>√196</u>	14
$\sqrt{9}$	3
$\sqrt{64}$	8
$\sqrt{4}$	2
$\sqrt{324}$	18
√529	23
$\sqrt{100}$	10
$\sqrt{49}$	7
√361	19
<u>√169</u>	13
$\sqrt{289}$	17
$\sqrt{16}$	4
$\sqrt{81}$	9
$\sqrt{225}$	15

$\sqrt{9}$	3
$\sqrt{144}$	12
$\sqrt{36}$	6
$\sqrt{225}$	15
$\sqrt{324}$	18
$\sqrt{64}$	8
$\sqrt{484}$	22
$\sqrt{100}$	10
$\sqrt{1}$	1
$\sqrt{576}$	24
<u>√169</u>	13
$\sqrt{25}$	5
$\sqrt{625}$	25
$\sqrt{256}$	16
$\sqrt{81}$	9
√529	23
$\sqrt{400}$	20
$\sqrt{4}$	2
$\sqrt{289}$	17
<u>√121</u>	11
$\sqrt{361}$	19
$\sqrt{441}$	21
$\sqrt{16}$	4
<u>√196</u>	14
$\sqrt{49}$	Z

$\sqrt{100}$	10
√ <u>169</u>	13
$\sqrt{9}$	3
√361	19
$\sqrt{484}$	22
$\sqrt{36}$	6
<u>√121</u>	11
$\sqrt{64}$	8
$\sqrt{324}$	18
$\sqrt{256}$	16
√196	14
$\sqrt{4}$	2
$\sqrt{225}$	15
$\sqrt{576}$	24
$\sqrt{49}$	7
$\sqrt{529}$	23
$\sqrt{81}$	9
$\sqrt{625}$	25
$\sqrt{25}$	5
$\sqrt{441}$	21
$\sqrt{1}$	1
$\sqrt{400}$	20
$\sqrt{144}$	12
$\sqrt{289}$	17
$\sqrt{16}$	4

$\sqrt{25}$	5
$\sqrt{225}$	15
$\sqrt{576}$	24
$\sqrt{64}$	8
$\sqrt{625}$	25
$\sqrt{4}$	2
$\sqrt{256}$	16
$\sqrt{144}$	12
$\sqrt{81}$	9
$\sqrt{9}$	3
$\sqrt{400}$	20
$\sqrt{100}$	10
$\sqrt{484}$	22
$\sqrt{121}$	11
$\sqrt{16}$	4
$\sqrt{441}$	21
$\sqrt{324}$	18
$\sqrt{289}$	17
<u>√196</u>	14
$\sqrt{49}$	Z
$\sqrt{529}$	23
$\sqrt{361}$	19
$\sqrt{36}$	6
$\sqrt{1}$	1
$\sqrt{169}$	13

The Pythagorean Theorem & & Its Converse

Example 1:	Pythagorean Theorem Proof Activity
You Try 1:	Pythagorean Theorem Proof Activity
Example 2:	Finding the Missing Hypotenuse
You Try 2:	Finding the Missing Hypotenuse
Example 3:	Finding the Missing Leg
You Try 3:	Finding the Missing Leg
Example 4:	Pythagorean Triples
You Try 4a:	Pythagorean Triple
You Try 4b:	Pythagorean Triple

Pythagorean Theorem Proof Example 1

А	А	А	А
A	A	A	А
А	А	A	А
А	А	A	А
В	В	В	
В	В	В	
В	В	В	

Directions for Example 1

- 1. Use the Pythagorean Theorem Proof worksheet to record your work.
- 2. Cut out square A, square B and the 4 right triangles. Color square A yellow, square B pink and the triangles green.
- 3. Label each of the four triangles with a right angle symbol.
- 4. Label each of the four triangles with *leg*, *leg*, and *hypotenuse*.
- 5. Label each triangle as follows; side length 4, *a*; side length 3, *b* and the hypotenuse, *c*.
- 6. Arrange the four right triangles to form the diagram below. Glue onto separate piece of paper.

- 7. Outline square C in orange and the larger square in blue.
- 8. What is the area of square A?
- 9. What is the area of square B?
- 10. What is the total area for square A and square B?
- 11. Choose one green triangle. Glue square A and B onto the appropriate sides of the triangle.
- 12. Color the additional square A and square B orange. Using the orange squares, fill in the missing square C.
- 13. What is the Area of square C?
- 14. Does square A + square B = square C?
- 15. What is the length of the hypotenuse?
- 16. What is the area of the four green triangles?
- 17. What is the area of the blue square?

Pythagorean Theorem Proof Worksheet Example 1

Square A	Square B	Square C	Green Triangles	Blue Square
Square A +	- Square B	Square C -	F Green Triangles	

Pythagorean Theorem Find the missing hypotenuse.	The Converse of Pythagorean Theorem Is the triangle a right angled triangle?	Pythagorean Theorem Proof Prove Pythagorean Theorem true.

Pythagorean Theorem Proof You Try 1

Pythagorean Theorem Proof You Try 1

Directions	for	You	Try	1:

- 1. Use the Pythagorean Theorem Proof worksheet to record your work.
- 2. Cut out square A, square B and the 4 right triangles. Color square A yellow, square B pink and the triangles green.
- **3.** Label each of the four triangles with a right angle symbol.
- 4. Label each of the four triangles with *leg, leg,* and *hypotenuse*.
- 5. Label each triangle as follows; side length 5, *a*; side length 12, *b* and the hypotenuse, *c*.
- 6. Arrange the four right triangles to form the diagram below. Glue onto a separate piece of paper.

- 7. Outline square C in orange and the larger square in blue.
- **8.** What is the area of square A?
- 9. What is the area of square B?
- **10.** What is the total area for square A and square B?
- **11.** Choose one green triangle. Glue square A and square B onto the appropriate sides of the triangle.
- **12.** Color the additional square A and square B orange. Using the orange squares, fill in the missing square C.
- **13.** What is the Area of square C?
- **14.** Does square A + square B = square C?
- **15.** What is the length of the hypotenuse?
- **16.** What is the area of the four green triangles?
- **17.** What is the area of the blue square?

21	24		21	11							
А	А	А	А	А							
А	А	А	А	А							
А	А	А	А	А							
В	В	В	В	В	В	В	В	В	В	В	В
В	в	В	В	В	В	В	В	В	В	В	В
В	В	В	В	В	В	В	в	В	В	В	В
В	В	В	В	В	В	В	В	В	В	В	В
В	В	В	В	В	В	В	В	В	В	В	В
В	В	В	В	В	В	В	В	В	В	В	В
В	В	В	В	В	В	В	В	В	В	В	В
В	В	В	В	В	В	В	В	В	В	В	В
В	В	В	В	В	В	В	В	В	В	В	В
В	В	В	В	В	В	В	В	В	В	В	В
В	В	В	В	В	В	В	В	В	В	В	В
В	В	В	В	В	В	В	В	В	В	В	В

А

А

А

А

А

Pythagorean Theorem Proof Worksheet You Try 1

Square A	Square B	Square C	Green Triangles	Blue Square
Square A +	- Square B	Square C -	+ Green Triangles	
1				

Pythagorean Theorem Find the missing hypotenuse.	The Converse of Pythagorean Theorem Is the triangle a right angled triangle?	Pythagorean Theorem Proof Prove Pythagorean Theorem true.

Directions for Example 2

Use the Pythagorean Theorem Proof worksheet to record your work.

- 1. Cut out square A, square B and the 4 right triangles. Color square A yellow, square B pink and the triangles green.
- **2.** Label each of the four triangles with a right angle symbol.
- **3.** Label each of the four triangles with *leg*, *leg*, and *hypotenuse*.
- 4. Label each triangle as follows; side length 8, *a*; side length 15, *b* and the hypotenuse, *c*.
- 5. Arrange the four right triangles to form the diagram below. Glue onto a separate piece of paper.
- 6. Outline square C in orange and the larger square in blue.
- 7. What is the area of square A?
- 8. What is the area of square B?
- 9. What is the total area for square A and square B?
- **10.** Choose one green triangle. Glue square A and square B onto the appropriate sides of the triangle.
- **11.** Color the additional square A and square B orange. Using the orange squares, fill in the missing square C.
- **12.** What is the Area of square C?
- **13.** Does square A + square B = square C?
- **14.** What is the length of the hypotenuse?
- **15.** What is the area of the four green triangles?
- **16.** What is the area of the blue square?

Pythagorean Theorem Finding the Missing Hypotenuse Example 2

Find the missing length in the right triangle.

Pythagorean Theorem Proof

Pythagorean Theorem Finding the Missing Hypotenuse Worksheet Example 2

Square A	Square B	Square C	Green Triangles	Blue Square
Square A +	- Square B	Square C -	F Green Triangles	

Pythagorean Theorem Find the missing hypotenuse.	The Converse of Pythagorean Theorem Is the triangle a right angled triangle?	Pythagorean Theorem Proof Prove Pythagorean Theorem true.

Pythagorean Theorem Finding the Missing Hypotenuse Worksheet You Try 2

Find the missing length in the right triangle. Use a piece of graph paper and draw the proof. Follow directions from Example 2.

Square A	Square B	Square C	Green Triangles	Blue Square
C A ·	a b	C C		
Square A +	Square B	Square C -	- Green Triangles	

The Converse of Pythagorean Theorem Is the triangle a right angled triangle?	Pythagorean Theorem Proof Prove Pythagorean Theorem true.
	The Converse of Pythagorean Theorem Is the triangle a right angled triangle?

Pythagorean Theorem Finding the Missing Leg Measure Example 3

Find the missing length in the right triangle.

Directions for Example 3

- 1. Use attached worksheet to record your work.
- 2. Color square A yellow and square C orange. Cut square A and C out.
- 3. Label the side lengths of square A.
- 4. What is the area of square A?
- 5. Label the side lengths of square C.
- 6. What is the area of square C?
- 7. What is the difference of the area of square C and square A?
- 8. Draw a third *square* on the remaining graph paper using the *difference* from question 4.
- 9. Color the third square pink and label it square B.
- 10. Label the side lengths of square B.
- 11. What is the area of square B?
- 12. Glue squares A, B and C onto the right triangle.
- 13. Color the triangle green. Label the sides with their lengths.

Pythagorean Theorem Finding the Missing Leg Measure Worksheet Example 3

Square C	Square A	Square B	Side Length of Square B
Square C -	- Square A		

Method 1 Squares on the Sides of a Triangle

Method 2 Pythagorean Theorem

$$a^2 + b^2 = c^2$$

Pythagorean Theorem Finding the Missing Leg Measure You Try 3

Find the missing length in the right triangle.

Directions for You Try 3

- 1. Use the Finding the Missing Leg Measure worksheet to record your work.
- 2. Color square A, yellow and square C, orange. Cut square A and square C out.
- 3. Label the side lengths of square A.
- 4. What is the area of square A?
- 5. Label the side lengths of square C.
- 6. What is the area of square C?
- 7. What is the difference of the area of square C and square A?
- 8. Draw a third *square* on the remaining graph paper using the *difference*.
- 9. Color the third square pink and label it square B.
- 10. Label the side lengths of square B.
- 11. What is the area of square B?
- 12. Arrange square A, B and C to form a right triangle. Glue onto worksheet under Method 1.
- 13. Outline the right triangle green.

*Use a piece of graph paper and draw square B and square C based on their side lengths.

Pythagorean Theorem Finding the Missing Leg Measure Worksheet You Try 3

Square C	Square A	Square B	Side Length of Square B
Square C -	- Square A		

Method 1 Squares on the Sides of a Triangle

Method 2 Pythagorean Theorem

 $a^2 + b^2 = c^2$

Pythagorean Theorem The Pythagorean Theorem Triples Example 4

A *Pythagorean triple* is an ordered triple (a, b, c) of three positive integers such that $a^2 + b^2 = c^2$.

: It is true. The Pythagorean Triple of 3, 4 and 5 makes a Right Angled Triangle

Here is a list of the first four Pythagorean Triples and their multiples:

Multiples	(3,4,5)	(5,12,13)	(7,24,25)	(8,15,17)
×2	(6,8,10)	(10,24,26)	(14,48,50)	(16,30,34)
×3	(9,12,15)	(15,36,39)	(21,72,75)	(24,45,51)
×4	(12,16,20)	(20,48,52)	(28,96,100)	(32,60,68)
×5	(15,20,25)	(25,60,65)	(35,120,125)	(40,75,85)

*Students should memorize the first 4 Pythagorean Triples.

You Try 4

Tell whether the given side lengths are a Pythagorean Triple.

You Try 4a

You Try 4b

$$a = 9, b = 11, c = 14$$
 $a = 12, b = 35, c = 37$

EX 1)

Solutions

, , , , , , , , , , , , , , , , , , ,	Square A	Square B	Square C	Green Triangles	Blue Square	
	$A = 4cm \bullet 4cm$	$A = 3cm \bullet 3cm$	$A = 5cm \bullet 5cm$	$A = 4\left(\frac{a \bullet b}{2}\right)$	$A = 7cm \bullet 7cm$	
	$=16cm^2$	$=9cm^2$	$=25cm^2$	$=4\left(\frac{4\bullet 3}{2}\right)$	$=49cm^2$	
				$= 4(6)$ $= 24cm^{2}$		
	Square A	A + Square B	Square C + C	Green Triangles		प
	16 <i>cm</i>	$r^{2} + 9cm^{2}$	$25cm^2$	$+24cm^{2}$		12+b2
	= 250	cm^2	=49cn	n^2	7 33.5	tes CP
Pythagorean	Con	iverse	Proof			Exam
$a^2 + b^2 = c^2$	r 4 h 2 r 5		A = A + A		G	ple#1
$4^2 + 3^2 = c^2$	a = 4, b = 3, c = 5		$289cm^2 = 169cm^2 + 12$	$\Delta 20 cm^2$	Langer .	
$(4 \cdot 4) + (3 \cdot 3) = c^2$	$4^2 + 3^2$	$=5^{2}$	$289cm^2 = 289cm^2$			
$16 + 9 = c^2$	16+9=	= 25				
$25 = c^2$	$25cm^2$	$=25cm^2$	· Pythagorean Theorem is prove	n true.	4m	
$\sqrt{25} = \sqrt{c^2}$	• It is a right	and triangle				
$\sqrt{5 \cdot 5} = \sqrt{c \cdot c}$					A A	4 cm
5-0					A = 4 tan Ham A = (4 tan) 2 A = (4 tan) 2	
•• The hypotenuse is 5 cm long						

Square A	Square B	Square C	Green Triangles	Blue Square	
$A = 5_{units} \bullet 5_{units}$ $= 25_{units}^{2}$	$A = 12units \bullet 12units$ $= 144units^{2}$	$A = 13units \bullet 13units$ $= 169units^{2}$	$A = 4\left(\frac{a \bullet b}{2}\right)$ $= 4\left(\frac{5 \bullet 12}{2}\right)$	$A = 17_{units} \bullet 17_{units}$ $= 289_{units}^{2}$	
			$= 4(30)$ $= 120_{units}^{2}$		
Square A	+ Square B	Square C + C	Freen Triangles	a la	23
$25units^2$ +	-144units ²	$169units^2$	+120units ²	Bullion Contraction	a ² +b
$=169_{units}^2$		= 289unit	s ²		and
Pythagorean Theorem	Converse	Proof			You
a2 + b2 = c2 52 + 122 = c2	<i>a</i> =5, <i>b</i> =12, <i>c</i> =13	$A_{\text{Blue}} = A_{\text{Orange}} + A$ $289_{\text{units}^2} = 169_{\text{units}^2} + 12$	Δ 20 _{units} ²		Try#1
$(5 \cdot 5) + (12 \cdot 12) = c^2$ $25 + 144 = c^2$	$5^2 + 12^2 = 13^2$	$289_{units}^2 = 289_{units}^2$			2 A .:
$169 = c^2$ $\sqrt{169} = \sqrt{c^2}$	25 + 144 = 169 $169_{units}^2 = 169_{units}^2$	•• Pythagorean Theorem is prov	en true.		
$\sqrt{13 \cdot 13} = \sqrt{c} \cdot 13 = c$	•• It is a right angled triangle.			B	A rest 12 - 12
. The hypotenuse is 13 cm long					

EX 2)

Square A	Square B		Square C	Green Triangles	Blue Square	
$A = 8in \bullet 8in$	$A = 15in \bullet 15in$		$A = 17in \bullet 17in$	$A = 4\left(\frac{8 \bullet 15}{2}\right)$	$A = 23in \bullet 23in$	
$= 64in^2$	$= 225in^{2}$		$= 289in^2$	$=4\left(\frac{120}{2}\right)$	$=529in^2$	
				= 4(60)		
Squara A	+ Sauara B		Squara $C + C$	$= 240in^2$		
64 <i>in</i> ² +	$+ 225in^2$		289 <i>in</i> ²	$+240in^2$		
= 289ii	n^2		= 529 <i>in</i>	2		
Pythagorean Theorem	Converse		Proof		23in.	
$a^2 + b^2 = c^2$	<i>a</i> =8, <i>b</i> =15, <i>c</i> =17	1	$A_{\text{Blue}} = A_{\text{Orange}} + A_{\Delta}$	201 - 2010 2011 - 2010	NULTO E PA	
$8^2 + 15^2 = c^2$	$8^2 + 15^2 - 17^2$	52	$9in^2 = 289in^2 + 240in^2$ $9in^2 = 520in^2$		A= 12.17 E	20.
$(8 \cdot 8) + (15 \cdot 15) = c^2$	8 + 13 = 17 64 + 225 = 289	32	9in = 329in	23in.	0	231
$64 + 225 = c^2$ $289 = c^2$	$289in^2 = 289in^2$		Pythagorean Theorem is proven true		11	k
$\sqrt{289} = \sqrt{c^2}$	• Te is a sink such designal.				R 1000 510	sin.
$\sqrt{17 \cdot 17} = \sqrt{c \cdot c}$	•• It is a right angled triangle.			11 \$210 YeV	54=0,641 15m	4
17 = c						
					151n. A=15r15	
 The hypotenuse is 17 in. long 					5225Tub 7	

YT 2)

Square A	Square B	Square C	Green Triangles	Blue Square	
$A = 9_{units} \bullet 9_{units}$	$A = 12_{units} \bullet 12_{units}$	$A = 15_{units} \bullet 15_{units}$	$A = 4\left(\frac{8 \cdot 15}{2}\right)$	$A = 21 units \bullet 21 units$	
$= 8 lunits^2$	$=144_{units}^{2}$	= 225units ²	$=4\left(\frac{120}{2}\right)$	=44 lunits ²	
			=4(60)		
			$= 240in^2$		
Square A +	- Square B	Square C + G	reen Triangles		-
$= 81_{units}^2$ -	+144units ²	= 225units ²	+216units ²		
= 225units	2	$=441_{units}^{2}$			
Pythagorean	Converse	Proof		Diunits	
Ineorem	- 0 h 15 - 17	4 4 4		1 2-9	6=12 L
$a^2 + b^2 = c^2$	a = 8, b = 15, c = 17	$A_{\text{Blue}} = A_{\text{Orange}} + A_{\Delta}$			C Cel
$9^2 + 12^2 = c^2$		$441_{units}^2 = 225_{units}^2 + 216_{units}$	its ²	V225unite	15
$(9\bullet9)+(12\bullet12)=c^2$	$9^2 + 12^2 = 15^2$	$441_{units}^2 = 441_{units}^2$		= V 194	21 vaits
$81 + 144 = c^2$	81 + 144 = 225				
$225 = c^2$	$225_{units}^2 = 225_{units}^2$	· Pythagorean Theorem is proven true	SA 41 9 50	A = 15-15 = 225mit	3 ² 5 6
$\sqrt{225} = \sqrt{c^2}$			A CASE		C =12
$\sqrt{15 \cdot 15} = \sqrt{c \cdot c}$ $15 = c$	•• It is a right angled triangle.		A= 9.9	0-1 -5/5	
			1229.00	1 beiz	0.59
. The hypotenuse is 15 units long				ATAMAX XX	

A= 12.12

FX	3)
$L\Lambda$	5)

Square C	Square A	Square B	Side Length of Square B
$A = 10 ft \bullet 10 ft$ $= 100 ft^{2}$	$A = 6 ft \bullet 6 ft$ $= 36 ft^{2}$	$A = 8 ft \bullet 8 ft$ $= 64 ft^{2}$	b = 8 ft
Square C -	– Square A		
$=100 ft^{2}$	$^{2}-36ft^{2}$		
$= 64 ft^2$			

Method 1	Method 2
Squares on the Sides of a Triangle	Pythagorean Theorem
C A 6 ft 8 ft B	$a^{2} + b^{2} = c^{2}$ $6^{2} + b^{2} = 10^{2}$ $(6 \cdot 6) + b^{2} = (10 \cdot 10)$ $36 + b^{2} = 100$ $36 - 36 + b^{2} = 100 - 36$ $b^{2} = 64$ $\sqrt{b^{2}} = \sqrt{64}$ $\sqrt{b^{2}} = \sqrt{64}$ $\sqrt{b \cdot b} = \sqrt{8 \cdot 8}$ $b = 8$ • • The leg is 8 ft long.

YT 3)

Square C	Square A	Square B	Side Length of Square B
$A = 20 ft \bullet 20 ft$ $= 400 ft^{2}$	$A = 16 ft \bullet 16 ft$ $= 256 ft^{2}$	$A = 12 ft \bullet 12 ft$ $= 144 ft^{2}$	b = 12 ft
Square C -	- Square A		
$=400ft^2$	$-256 ft^{2}$		
$=144 ft^{2}$			

YT 4a)

$$a = 9, b = 11, c = 14$$

$$a^{2} + b^{2} = c^{2}$$

$$9^{2} + 11^{2} = 14^{2}$$

$$(9 \cdot 9) + (11 \cdot 11) = (14 \cdot 14)$$

$$81 + 121 = 196$$

$$202 \neq 196$$

∴ It is not a Pythagorean Triple.

YT 4b)

a = 12, b = 35, c = 37 $a^{2} + b^{2} = c^{2}$ $12^{2} + 35^{2} = 37^{2}$ $(12 \cdot 12) + (35 \cdot 35) = (37 \cdot 37)$ 144 + 1,225 = 1,369 1,369 = 1,369∴ It is a Pythagorean Triple.

CST/CAHSEE:

√225	25 ²	35 ²	45 ²
$=\sqrt{15 \bullet 15}$	$= 25 \bullet 25$	= 35 • 35	= 45 • 45
=15	= 625	= 1,225	= 2,025
Α			

Review:

В

Current:

В

Eliminate distracter C because the square root of 2 is an irrational number. Eliminate distracter D because the missing side length can not be larger than 17. The perfect square of 17 is 289. Therefore the square root of 514 would be greater than 17.

Warm-Up

Other:

В

You can eliminate A since the hypotenuse is the longest side of a right triangle. 3-4-5 is a Pythagorean Triple.